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Abstract. A labeling scheme is a space-efficient data structure for encoding graphs
from a particular graph class. The idea is to assign each vertex of a graph a short
label s.t. adjacency of two vertices can be algorithmically determined from their labels.
For instance, planar and interval graphs have labeling schemes. The algorithm used
to determine adjacency—called label decoding algorithm—should be of low complexity
since the time it takes to execute corresponds to the time to query an edge in that
representation.
What graph classes have a labeling scheme if the label decoding algorithm must be

very efficient, e.g. computable in constant time? In order to investigate this question we
introduce logical labeling schemes where the label decoding algorithm is expressed as a
first-order formula and consider their properties such as the relation to labeling schemes
defined in terms of classical complexity classes. Additionally, we introduce a notion of
reduction between graph classes in terms of boolean formulas and show completeness
results.
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1 Introduction

Labeling schemes are a type of data structure that provide space-optimal representations for certain
graph classes up to a constant factor. Let us consider interval graphs as an example. A graph is an
interval graph if each of its vertices can be mapped to a closed interval on the real line such that
two vertices are adjacent iff their corresponding intervals intersect. There are 2O(n logn) different
interval graphs on n vertices. Neither adjacency matrix nor adjacency list are optimal to represent
an interval graph since both require more than O(n log n) bits. Instead, the interval model of an
interval graph can be used: given an interval graph G with n vertices, write down its interval model
(the set of intervals that correspond to its vertices), enumerate the endpoints of the intervals from
left to right and label each vertex with the two endpoints of its interval, see Figure 1. The set of
vertex labels is a representation of the graph and adjacency of two vertices can be determined by
comparing their four endpoints. Each endpoint is a number between 1 and 2n and therefore a vertex
label requires 2 log 2n bits. Thus, such a representation of an interval graph requires only O(n log n)
bits.
The idea behind this representation can be generalized. Let C be a graph class with 2O(n logn)

graphs on n vertices; we call such a graph class factorial1. We say C has a labeling scheme if the
vertices of every graph in C can be assigned binary labels of length O(log n) such that adjacency
can be decided by an (efficient) algorithm A which gets two labels as input. The algorithm A may
only depend on C. By adjusting the label length it is also possible to find labeling schemes for

*Leibniz Universität Hannover, Institut für Theoretische Informatik; E-Mail: chandoo@thi.uni-hannover.de
1In the literature such graph classes are called at most factorial and the term factorial is reserved for graph classes
with 2Θ(n logn) graphs on n vertices see [BBW00; HWZ22]
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Figure 1: Interval model and the resulting labeling of the interval graph

non-factorial classes. However, many important graph classes are factorial and therefore we restrict
our attention to them.

Labeling schemes were introduced by Muller [Mul88] and by Kannan, Naor and Rudich [KNR92].
One line of research in this area has aimed to minimize the label length (the constant in O(log n))
for certain graph classes such as forests and planar graphs since this also puts an upper bound on the
number of graphs on n vertices of such a class [ADK17; Duj+21; Bon+21a]. Another fundamental
question is what factorial and hereditary (= closed under vertex deletion) graph classes have labeling
schemes. Until recently, it was not even known if there exist a factorial, hereditary graph class
without a labeling scheme. This long open-standing problem, also known as the implicit graph
conjecture [Spi03], has been recently solved by Hatami & Hatami [HH22]. They prove the existence
of such graph classes using a counting argument. An additional interesting consequence of their
argument is that any kind of representation for factorial graph classes will fail to represent all
factorial, hereditary graph classes (see Lemma 2.4 and the subsequent paragraph).
Nonetheless, it remains a challenging problem to determine for certain natural graph classes

whether they have a labeling scheme. Factorial, hereditary graph classes for which no labeling
schemes are known include disk graphs, line segment graphs, k-dot product graphs [Spi03], graph
classes with bounded functionality [AAL21], P7-free bipartite graphs [LZ17] and T -free chordal
bipartite graphs for every tree T [LZ15]. Also, for those graph classes for which a labeling scheme
is already known, it is of interest to determine whether a labeling scheme with a label decoding
algorithm in constant time is possible. For instance, such labeling schemes for graph classes with
bounded clique-width are not known.
Labeling schemes for many graph classes have a label decoder that can be expressed as a first-

order formula that only adds, multiplies and compares numbers. Such label decoders can be
computed in constant time on a RAM [Cha17, Cor. 3.84]. This motivated us to investigate this
class of labeling schemes, which we call logical. We show that certain fragments of logical labeling
schemes admit various characterizations and have connections to semi-algebraic graph classes and
communication complexity [HWZ22]. This suggests that they describe robust natural sets of graph
classes. Additionally, proving lower bounds against logical labeling schemes seems more feasible than
against labeling schemes with arbitrary efficiently computable label decoders due to the structure of
first-order formulas.

Overview. In Section 2 we formally define labeling schemes and show how classes of labeling
schemes can be defined in terms of sets of languages. In Section 3 we introduce logical labeling
schemes where the label decoder is expressed as a first-order formula and relate them to classes
of labeling schemes defined in terms of complexity classes. Moreover, we show that quantifiers do
not increase the expressiveness of logical labeling schemes without addition and multiplication and
that a certain fragment of logical labeling schemes coincides with equality-based labeling schemes
introduced in [HWZ22]. In Section 4 we consider what happens when the size restriction on the
labeling is omitted in quantifier-free logical labeling schemes. Graph classes that can be represented
in such a way are a subset of semi-algebraic graph classes. Many factorial, hereditary graph classes
not known to have a labeling scheme can be found there. In Section 5 we define a reduction notion
between graph classes, which allows us to relate the difficulty of finding labeling schemes for different
graph classes. We prove that two graph classes called dichotomic and linear neighborhood graphs
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are complete for certain fragments of logical labeling schemes. Additionally, we prove that no
uniformly sparse graph class is complete for any such fragment. Figure 3 in the final section provides
an overview of all the sets of graph classes discussed here and their relations.

2 Preliminaries

Notation. We write N,N0,Z,Q and R to denote the set of naturals excluding 0, naturals
including 0, integers, rationals and reals. For n ∈ N let [n] = {1, . . . , n} and [n]0 = [n] ∪ {0}. Let
log n = ⌈log2 n⌉. Given a set X whose elements are sets, let [X]⊆ = {x′ | x ∈ X and x′ ⊆ x} denote
its closure under subsets. For a function f which maps to a k-tuple, we write fi(x) to denote the
i-th component for k ∈ N and i ∈ [k]. We consider an undirected graph to be a directed graph with
symmetric edge relation. Every graph G = (V,E) is assumed to contain no self-loops ((v, v) /∈ E for
all v ∈ V ) unless explicitly stated otherwise; we say “a graph with self-loops” to indicate that it may
contain self-loops. The in-neighborhood Nin(v) of a vertex v in a graph G is {u | (u, v) ∈ E(G)}
and the out-neighborhood Nout(v) is {u | (v, u) ∈ E(G)}. A graph class is a set of graphs closed
under isomorphism. For a graph class C and n ∈ N let C=n, C>n, C<n denote the set of graphs with
n, more than n and less than n vertices in C.

A boolean formula is an expression consisting of propositional variables and the boolean connectives
¬,∧,∨. A first-order formula φ over signature σ is an expression consisting of boolean connectives
¬,∧,∨, quantifiers ∃, ∀, the equality symbol ‘=’, relation and function symbols from σ and variables.
A variable in φ is called free if it is not quantified. A first-order formula is called atomic if it contains
no quantifiers and boolean connectives. The structure N has N0 as universe and is equipped
with order ‘<’ and addition ‘+‘ and multiplication ‘×‘ as functions, i.e. +(x, y) = x + y and
×(x, y) = xy. The structure Nn has [n]0 as universe and is equipped with order ‘<’, cut-off addition
‘+‘ (+(x, y) := x+ y if x+ y ≤ n and 0 otherwise) and cut-off multiplication ‘×‘. Given a first-order
formula φ over {<,+,×} with k free variables and a1, . . . , ak ∈ N, we write (M, a1, . . . , ak) |= φ to
denote that φ is satisfied (modeled) when its free variables are replaced with a1, . . . , ak and it is
interpreted over the structure M.

Graph Theory. A graph class C is undirected if it contains only undirected graphs. A graph
class C is hereditary if every graph that occurs as induced subgraph of a graph in C is in C as well.
For example, forests and planar graphs are hereditary but trees are not. The hereditary closure
[C]hc of a graph class C is the set of graphs that occur as induced subgraph of a graph in C. For
example, the hereditary closure of trees are forests. A graph class is at most factorial if it has at
most 2O(n logn) different graphs on n vertices; for brevity we will omit the qualifier ‘at most’. A
graph class C is uniformly sparse if every graph G with n vertices in [C]hc has at most cn edges for
some fixed c ∈ N and all n ∈ N. We write Hereditary, Factorial and US to denote the set of hereditary,
factorial and uniformly sparse graph classes. A graph class C is said to have a polynomial-size
universal graph if there exists a sequence G1, G2, . . . of graphs such that every graph in C=n is an
induced subgraph of Gn for all n ∈ N and n 7→ |V (Gn)| is polynomially bounded.
An intersection graph class is a graph class where the vertices of every graph from that class

can be mapped to some type of object (e.g. line segments in the plane) such that two vertices
are adjacent iff their associated objects intersect. Line segment graphs, disk graphs and k-box
graphs are the intersection graphs of line segments in R2, disks in R2 and k-dimensional axis-parallel
boxes in Rk for k ∈ N. A permutation graph is the intersection of line segments whose endpoints
are placed on two paralells (the two endpoints of a line segment may not be placed on the same
parallel). A graph is a k-interval graph if each of its vertices can be associated with k closed intervals
on the real line such that two vertices are adjacent iff some of their intervals intersect. A graph
G = (V,E) is a k-dot product graph if there exists a mapping f : V → Rk such that (u, v) ∈ E iff
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∑k
i=1 fi(u)fi(v) ≥ 1 for all u ̸= v ∈ V . The interval number (resp. boxicity) of a graph G is the

smallest k ∈ N such that G is a k-interval (resp. k-box) graph. The arboricity (resp. thickness) of a
graph G is the smallest k ∈ N such that there exist k forests (resp. planar graphs) G1, . . . , Gk on
the same vertex set as G such that E(G) = ∪ki=1E(Gi).

Complexity Theory. Let P, EXP and 2EXP denote the set of languages that are decidable in
polynomial time, exponential time and double exponential time. Let R denote the set of decidable
languages and let PH denote the set of languages in the polynomial-time hierarchy. Additionally, we
will refer to the two circuit complexity classes AC0 and TC0. The class AC0 consists of the languages
over {0, 1} that can be decided by a family of boolean circuits of polynomial size and constant
depth using negation gates and gates for conjunction and disjunction with unbounded fan-in. The
class TC0 is defined just as AC0 but additionally majority gates (outputs 1 iff the majority of its
inputs is 1) with unbounded fan-in may be used. Logspace-uniformity is assumed. It holds that
AC0 ⊆ TC0 ⊆ P. Moreover, order can be computed in AC0 and multiplication can be computed TC0.
See [Vol99] for formal definitions and the mentioned results in circuit complexity.

Complexity classes can be interpreted as sets of labeling schemes by viewing a label decoder as
decision problem. By extension, every complexity class A can be associated with the set of graph
classes GA represented by its labeling schemes.

Definition 2.1. A labeling scheme is a tuple S = (F, c) where F ⊆ {0, 1}∗ × {0, 1}∗ is called label
decoder and c ∈ N is called label length. A graph G with n vertices is representable by S, in symbols
G ∈ gr(S), if there exists a labeling ℓ : V (G) → {0, 1}c logn such that for all u ̸= v ∈ V (G):

(u, v) ∈ E(G) ⇔ (ℓ(u), ℓ(v)) ∈ F

We call S a labeling scheme for a graph class C if every graph in C is representable by S (C ⊆ gr(S)).
We also say S represents C.

In a labeling scheme with label decoder F only queries ‘(x, y) ∈ F?’ where x and y have equal
length are ever made. Thus, we can assume w.l.o.g. that (x, y) ∈ F implies |x| = |y| for all label
decoders F . A label decoder can be encoded as language over {0, 1} by concatenating its entries.

Definition 2.2. Let F ⊆ {0, 1}∗ × {0, 1}∗ be a label decoder and let L(F ) = {xy | (x, y) ∈ F}. Let
A be a set of languages over {0, 1}. We say a graph class C is in GA if there exists a labeling scheme
(F, c) for C with L(F ) ∈ A.

For example, GP is the complexity class of graph classes that have a labeling scheme with a
polynomial-time computable label decoder. This means it takes polylogarithmic time to query an
edge in a graph with n vertices since the labels have O(log n) length. The classes GR (computable
label decoder) and GP coincide with the ones defined by Muller [Mul88] and Kannan et al. [KNR92],
respectively. The class GALL is the set of graph classes that have a labeling scheme without any
restriction on the label decoder (ALL denotes the set of all languages). A graph class is in GALL iff
it has a polynomial-size universal graph.
What graph classes have a labeling scheme? Due to the O(log n)-size restriction on the label

length, only factorial graph classes qualify for having a labeling scheme. Not all factorial graph
classes have a labeling scheme [Spi03, Thm. 2.1]. However, an arbitrary factorial graph class C
may have no meaningful structure at all since there does not need to be any relation between the
graphs on n vertices in C and the ones on m vertices for any n ̸= m. To exclude such cases a
common graph-theoretical uniformity requirement that can be imposed is that a graph class should
be hereditary.

This leads to the question whether every factorial, hereditary graph class has a labeling scheme,
which already has been posed in [KNR92]. Its affirmative statement became known as implicit graph
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conjecture. Recently, Hatami & Hatami proved that the answer to this question is negative. Their
counting argument assumes no computational restriction on the label decoder and it also implies
that any kind of finite representation for factorial graph classes will fail to capture all factorial,
hereditary graph classes; see the paragraph after Lemma 2.4.

Theorem 2.3 ([HH22]). There exists a factorial, hereditary graph class which has no polynomial-size
universal graph, i.e. Factorial ∩ Hereditary ̸⊆ GALL.

Lemma 2.4. There exists no countable set of factorial graph classes X such that for every factorial,
hereditary graph class C there exists a D ∈ X with C ⊆ D.

Proof. Let kn = 2
√
n and 0 < ϵ < 1. In [HH22, Claim 3.1] it is shown that there exists a graph

class G such that for every family of graph classes (Mn)n∈N with Mn ⊆ G=n and |Mn| = kn the
hereditary closure of ∪n∈NMn is factorial. Moreover, it holds that |G=n| ∈ 2Ω(n2−ϵ logn) and therefore
for each Mn there are 2Ω(knn2−ϵ logn) choices.
Let X = {C1, C2, . . . } be a countable set of factorial graph classes. A factorial graph class C

contains at most 2O(knn logn) different sets of n-vertex graphs with kn members, which is less than
the number of choices for Mn for sufficiently large n. Therefore, for every i ∈ N one can choose
a unique, sufficiently large n and Mn such that Mn ̸⊆ Ci. The hereditary closure of ∪n∈NMn is
factorial and not a subset of any class in X.

Let us call a function r : {0, 1}∗ → Factorial a kind of (finite) representation (for factorial graph
classes). We say a graph class C is representable in r if there exists a finite string x such that
C is a subset of r(x). The class of labeling schemes with computable label decoders is a kind of
representation: x 7→ gr(F, c) where x encodes a natural number c and a Turing machine which
decides F . Lemma 2.4 implies that any kind of representation r will fail to represent all factorial,
hereditary graph classes (the image of r corresponds to X). A consequence of this is that not every
factorial, hereditary graph class is semi-algebraic since polynomial-boolean systems (used to define
semi-algebraic graph classes) are a kind of representation (see Lemma 4.2).

This implies that any kind of finite representation for factorial graph classes will fail to represent
all factorial, hereditary graph classes since every representation being finite implies that there are
only countably many and a representation is assumed to represent a factorial graph class and all of
its subsets.

It remains an open problem to determine for natural graph classes such as disk graphs and others
mentioned in the introduction whether they have a labeling scheme. The counting argument is
based on constructing a set of factorial, hereditary graph classes of which there must be ‘more’
than what can be represented by polynomial-size universal graphs. This line of reasoning cannot be
applied when the existence of a labeling scheme for a specific graph class is considered. Instead,
it seems likely that restrictions on the label decoder must be presupposed in order to prove the
absence of a labeling scheme for a specific graph class. We shall see the first such negative result at
the end of the next section.
The following result shows via a diagonalization argument that restricting the computational

complexity of the label decoder does indeed affect the set of graph classes that can be represented.

Theorem 2.5 ([Cha17, Corollary 3.4]). GEXP ⊊ G2EXP ⊊ · · · ⊊ GR ⊊ GALL.

Many graph classes for which a labeling scheme is known can be trivially placed in GAC0. This
suggests that it is an interesting candidate to prove lower bounds against. For example, graph
classes with bounded clique-width, interval number or boxicity are in GAC0. A labeling scheme for
graph classes with bounded clique-width is described in [Spi03, p. 165 f.] whose label decoder can be
computed in AC0. In fact, the only exception that we are aware of are graph classes with bounded
twin-width and induced subgraphs of hypercubes for which labeling schemes are known but it is not
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clear whether they are in GAC0. These graph classes are known to be in GP [Bon+21b] and GR
[Har20; EHZ22], respectively.
To stay within the realm of graph theory, i.e. graph classes with some sort of graph-theoretical

structure, we already mentioned that one should consider graph classes which are not only factorial
but also hereditary. Additionally, one can also admit subsets of such classes, which leads to the
set [Factorial ∩ Hereditary]⊆. If a factorial graph class is not in [Factorial ∩ Hereditary]⊆, this implies
that its hereditary closure is not factorial.

Fact 2.6 ([Cha17, Theorem 4.5]). GAC0 ̸⊆ [Factorial ∩ Hereditary]⊆.

Informally, this may be interpreted as the fact that GAC0 is not well-behaved from a graph-
theoretical point of view. The same applies to all other complexity classes considered here as well
since they are supersets of AC0. In the next section, we shall see that if label decoders are defined
in terms of quantifier-free first-order formulas then the representable graph classes stay within
[Factorial ∩ Hereditary]⊆.

3 Logical Labeling Schemes

Establishing unconditional lower bounds in the context of computational complexity is difficult and
usually involves considering weak models of computation. The setting of labeling schemes adds an
additional layer of complexity to that task. Even though AC0 is among the smallest complexity
classes studied in complexity theory, it currently seems intractable to prove that a natural factorial,
hereditary graph class is outside of GAC0. Therefore a simpler class of labeling schemes that can
still represent interesting graph classes would be helpful.

The following class of labeling schemes fits that bill. Suppose that each vertex of a graph G with
n vertices is labeled with k integers between 0 and nc for some fixed c and k. These k integers
can be encoded using O(log n) bits. The label decoder is allowed to add, multiply and compare
these numbers and then determine adjacency from these comparisons. For example, the labeling
scheme for interval graphs from the introduction falls into this class. Each vertex is labeled with
two numbers between 1 and 2n to represent the endpoints of its interval and two vertices u, v with
numbers u1, u2, v1, v2 are adjacent iff neither u2 < v1 nor v2 < u1 meaning no interval ends before
the other starts; in this case c, k = 2. This type of label decoder can be formalized using first-order
formulas. All uniformly sparse graph classes, k-interval graphs and graph classes with bounded
boxicity can be represented with such labeling schemes.
By imposing syntactical restrictions on the formulas such as prohibiting quantifiers, different

classes of labeling schemes can be obtained that admit various characterizations. An interesting
instance of such a characterization is the following. Harms, Wild and Zamaraev have recently
introduced and investigated a class of labeling schemes called equality-based whose definition is
motivated from communication complexity [HWZ22]. They prove that graph classes which are
unbounded w.r.t. a certain parameter cannot have such a labeling scheme. We show that this class
of labeling schemes coincides with a certain fragment of logical labeling schemes.
In this section we formally define logical labeling schemes (Definition 3.1 & 3.2), describe their

relation to classical complexity classes (Theorem 3.4), show that quantifiers do not affect the set
of graph classes that can be represented if addition and multiplication are not allowed (Fact 3.6
and Theorem 3.7) and that equality-based labeling schemes coincide with the equality fragment of
logical labeling schemes (Lemma 3.11). The last part implies that label decoders which can compare
order ‘x < y’ as opposed to just equality ‘x = y’ are strictly more expressive (Corollary 3.12).

Definition 3.1. A logical labeling scheme is a tuple S = (φ, c) where φ is a first-order formula
over the signature {<,+,×} with 2k free variables and c, k ∈ N. If φ contains no quantifiers we call
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S quantifier-free. For a graph G with n vertices we define the following three interpretations of S:

G ∈ gr(S) :⇔ ∃ℓ : V (G) → [nc]k0 ∀u ̸= v ∈ V (G) : (u, v) ∈ E(G) ⇔ (Nnc , ℓ(u), ℓ(v)) |= φ

G ∈ gr∞(S) :⇔ ∃ℓ : V (G) → [nc]k0 ∀u ̸= v ∈ V (G) : (u, v) ∈ E(G) ⇔ (N , ℓ(u), ℓ(v)) |= φ

G ∈ grp(S) :⇔ ∃ℓ : V (G) → Nk0 ∀u ̸= v ∈ V (G) : (u, v) ∈ E(G) ⇔ (N , ℓ(u), ℓ(v)) |= φ

For a logical labeling scheme S = (φ, c) and a signature σ ⊆ {<,+,×} we say S is over σ if φ is a
formula over σ, i.e. φ uses only symbols from σ.

The definition of gr(S) essentially states that a graph can be represented by a logical labeling
scheme S = (φ, c) if each of its vertices can be labeled with k numbers from [nc]0 such that there
is an edge (u, v) iff φ is satisfied when plugging in the numbers ℓ(u) and ℓ(v) and evaluating it
over the finite structure Nnc . Due to the finiteness addition and multiplication are cut-off, e.g. a
term +(x, y) evaluates to 0 if x+ y > nc. The definition of gr∞(S) is identical to gr(S) except that
φ is evaluated over N and therefore addition and multiplication are not cut-off (no overflow can
occur). The definition of grp(S) is identical to gr∞(S) except that the numbers used to label the
vertices can be arbitrarily large instead of being at most nc. Therefore this interpretation does not
correspond to a labeling scheme. However, it does capture some factorial, hereditary graph classes
for which no labeling scheme is known and which will be considered in the next section.

Definition 3.2. Let σ ⊆ {<,+,×}. We define GFO(σ) (resp. GFOqf(σ)) as the set of graph classes
C for which there exists a (quantifier-free) logical labeling scheme S over σ such that C ⊆ gr(S).

We omit the curly braces when referring to these classes, e.g. GFO(<,+) = GFO({<,+}).
Moreover, we write GFOqf/GFO as shorthand for GFOqf(<,+,×)/GFO(<,+,×) and GFO(qf)(=)
as synonym for GFO(qf)(∅) since equality is the only symbol available when σ = ∅. We say a
graph class C is in GFO(σ) (resp. GFOqf(σ)) via a logical labeling scheme S if S is over σ (and
quantifier-free) and C ⊆ gr(S) . For example, interval graphs are in GFOqf(<) via (φ, 2) with
φ ≜ ¬(x2 < y1 ∨ y2 < x1).

Suppose gr(S) in Definition 3.2 is replaced with gr∞(S). Does that affect the set of graph classes
defined by GFO(σ) or GFOqf(σ)? The following lemma shows that it does not make a difference
for the class GFOqf(σ) if σ contains ‘<’ or σ = ∅. This means that in the context of quantifier-free
logical labeling schemes we can assume the natural interpretation of addition and multiplication
instead of the cut-off version when order is present.

Lemma 3.3 (Overflow). Let σ ⊆ {<,+,×} s.t. σ = ∅ or σ contains ‘<’. A graph class C is in
GFOqf(σ) iff there exists a quantifier-free logical labeling scheme S over σ such that C ⊆ gr∞(S).

Proof. If σ = ∅ then gr(S) = gr∞(S) holds for every logical labeling scheme S over σ since no
overflow can occur without using addition or multiplication. Therefore the statement trivially holds.
Let us consider the other cases where σ contains ‘<’.
“⇒”: Let C be a graph class in GFOqf(σ) via a logical labeling scheme S = (φ, c). We construct a

quantifier-free logical labeling scheme S′ = (ψ, c) over σ from S such that C ⊆ gr∞(S′). We assume
w.l.o.g. that we have access to the constants c0 = 0 and c1 = nc in ψ. The constants can be realized
by adding two variables to each vertex which are promised to receive the values 0 and nc in every
labeling; this means ψ has 2(k + 2) free variables if φ has 2k free variables. (Strictly speaking, c1
is not a logical constant since its value depends on n, which is not constant w.r.t. N ; we ask the
reader to think of it as a ‘pseudo constant’ instead.)
We build ψ from φ such that the overflow checks are incorporated into ψ. To do this, we replace

each atomic subformula A of φ by a guarded one A′.
We demonstrate how to do this based on the following example. Let A(x1, x2, y1, y2) be the

atomic formula ×(+(x1, y2), x2) < +(x2, y1). We convert A into A′ by checking whether an overflow
occurs at each subterm bottom-up. A′ is the following formula (order of operation is implied by
indentation and reading a formula φ→ α ∧ ¬φ→ β as “if φ then α else β”).
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c1 < +(x1, y2) → (1)

c1 < ×(c0, x2) → (2)

c1 < +(x2, y1) → (3)

c0 < c0 (4)

∧ ¬c1 < +(x2, y1) → (5)

c0 < +(x2, y1) (6)

∧ ¬c1 < ×(c0, x2) → (7)

c1 < +(x2, y1) → (8)

× (c0, x2) < c0 (9)

∧ ¬c1 < +(x2, y1) → (10)

× (c0, x2) < +(x2, y1) (11)

∧ ¬c1 < +(x1, y2) → (12)

c1 < ×(+(x1, y2), x2) → (13)

... (14)

In line (1) it is checked whether an overflow occurs for +(x1, y2) (if x1 + y2 > nc holds). In lines (2)
to (11) it is assumed that +(x1, y2) overflows and therefore it is replaced with c0. For example, the
overflow check for ×(+(x1, y2), x2) becomes c1 < ×(c0, x2) in line 2. In line (13) it is assumed that
+(x1, y2) does not overflow and thus +(x1, y2) is not replaced with c0.
“⇐”: Let C be a graph class and S = (φ, c) is a quantifier-free logical labeling scheme over σ

such that C ⊆ gr∞(S). The maximal value that results from evaluating any term in φ must be
polynomially bounded since every term in φ is a polynomial. This means there exists a d ∈ N such
that the largest value produced while evaluating φ for a graph with n vertices does not exceed ncd.
Therefore gr∞(φ, c) ⊆ gr(φ, cd) and C ∈ GFOqf(σ) via (φ, cd).

The following theorem describes the relation between the sets of graph classes defined in terms of
logical labeling schemes and the ones defined in terms of classical complexity classes. The label
decoder of a quantifier-free logical labeling scheme can be interpreted as a family of boolean circuits
by replacing each atomic formula with a circuit that computes it (the size of the circuit depends on
the number of vertices n). Quantifiers can be evaluated using non-determinism.

Theorem 3.4. GFOqf(<) ⊊ GAC0, GFOqf ⊊ GTC0 and GFO ⊆ GPH.

Proof. First, we show how to convert a logical labeling scheme S into regular labeling schemes S′

and S′′ such that gr(S) ⊆ gr(S′) and gr∞(S) ⊆ gr(S′′) (1). Then we argue that if C is in GFOqf(<)
/ GFOqf / GFO via a logical labeling scheme S then the label decoder of S′ (or S′′) can be computed
in AC0 / TC0 / PH and therefore the inclusions hold (2).

Strictness of the first two inclusions follows from:

GFOqf(<) ⊆ GFOqf ⊆
Corol. 4.5
PBS ⊆ [Factorial ∩ Hereditary]⊆

Fact 2.6
̸⊇ GAC0 ⊆ GTC0

(1) Let S = (φ, c) be a logical labeling scheme with 2k free variables. We define S′ = (Fφ, d)
as follows. There are two aspects that need to be considered when converting φ into Fφ. First,
in order to express the overflow conditions in Fφ, the number of vertices n of a graph must be
accessible somehow. However, since graphs with different numbers of vertices may receive vertex
labels of equal length, n cannot be inferred from the label length alone. For example, the vertices in
a graph with 9 vertices and the vertices in a graph with 16 vertices both receive labels whose length
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is d log 9 = d log 16 = 4d (reminder: by log n we mean ⌈log2 n⌉). We encode n in the first log n bits
of a vertex label. Secondly, a value in [nc]0 is encoded using (c+ 1) log n bits.
Let val : {0, 1}+ → N0 be the function which maps a binary string (possibly with leading zeros)

to its numeric value, e.g. val(0) = 0, val(1100) = 12 and so on. Let d = 1 + k(c+ 1) and let Fφ be
defined as:

(x0x1 . . . xk, y0y1 . . . yk) ∈ Fφ :⇔ (Nzc , val’(x1), . . . , val’(xk), val’(y1), . . . , val’(yk)) |= φ

for all x0, y0 ∈ {0, 1}m, xi, yi ∈ {0, 1}(c+1)m, m ∈ N and i ∈ [k] with z := val(x0) + 1 and
val’(w) := min{zc, val(w)}.

Let bink : [2
k − 1]0 → {0, 1}k be the bijective function which maps a number between 0 and 2k − 1

to its binary representation padded with leading zeros, e.g. bin4(2) = 0010. Suppose a graph G
with n vertices is in gr(S) via a labeling ℓ : V (G) → [nc]k0. Then it holds that G is in gr(S′) via the
labeling

ℓ′(v) := binm(n− 1)bin(c+1)m(ℓ1(v)) . . . bin(c+1)m(ℓk(v))

where m := log n and ℓi is the i-th component of ℓ.
The labeling scheme S′′ with gr∞(S) ⊆ gr(S′′) can be defined similarly to S′. The only two

differences are that we can drop the first log n bits of a vertex label used to encode n since there is
no need to check for overflows (therefore the label length of S′′ is k(c+ 1)) and in the definition of
the label decoder of S′′ the formula φ is interpreted over N instead of Nzc .

(2) Suppose C is in GFOqf . Due to Lemma 3.3 there exists a quantifier-free logical labeling scheme
S = (φ, c) such that C ⊆ gr∞(S). The label decoder of S′′ can be computed in TC0 via the family
of circuits that is described by φ itself since order, addition and multiplication can be computed in
TC0 and there is no need to consider overflows.

Similarly, if C is in GFOqf(<) there exists a quantifier-free logical labeling scheme S over {<}
such that C ⊆ gr∞(S) due to Lemma 3.3. Since order can be computed in AC0 it follows that the
label decoder of S′′ can be computed in AC0 via the family of circuits described by φ.
Suppose C is in GFO via a logical labeling scheme S = (φ, c). We can assume w.l.o.g. that φ

is in prenex normal form. The label decoder of S′ can be computed in PH due to the quantifier
characterization of PH and the fact that the quantifier-free part of φ can be evaluated in polynomial
time.
(To see that this proof is not circular despite its forward reference to Corollary 4.5, the reader

can think of this theorem as appearing at the very end of the paper, which is not a problem since it
is not used in any other proof.)

Next, we show that quantifiers do not increase the expressiveness in the absence of addition and
multiplication. To do so, we explain how a logical labeling scheme with quantifiers but neither
addition nor multiplication can be converted into an equivalent one without quantifiers.

Lemma 3.5. Let σ ⊆ {<,+,×} s.t. σ = ∅ or σ contains ‘<’. GFOqf(σ) is closed under union.

Proof. Let C,D ∈ GFOqf(σ). Due to Lemma 3.3 there exist quantifier-free logical labeling schemes
(φ, c) and (ψ, d) over σ such that C ⊆ gr∞(φ, c) and D ⊆ gr∞(ψ, d). We assume w.l.o.g. that φ
and ψ both have 2k free variables named x1, . . . , xk, y1, . . . , yk and c = d (assume c < d, then we
could choose (φ, d) instead since gr∞(φ, c) ⊆ gr∞(φ, d)). We define a quantifier-free logical labeling
scheme (ϕ, c) with 2(k + 2) free variables over σ:

ϕ(xa0, x
b
0, x1, . . . , xk, y

a
0 , y

b
0, y1, . . . , yk) ≜ ((xa0 = xb0) → φ) ∧ ((¬xa0 = xb0) → ψ)

Assume a graph G with n vertices is in gr∞(φ, c) via a labeling ℓ : V (G) → [nc]k0. Then G is in
gr∞(ϕ, c) via ℓ′(v) := (0, 0, ℓ(v)) for all v ∈ V (G). Similarly, for a graph G in gr∞(ψ, c) one can
choose ℓ′(v) := (0, 1, ℓ(v)). Therefore C ∪ D ⊆ gr∞(ϕ, c) and thus C ∪ D ∈ GFOqf(σ).
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Fact 3.6. GFOqf(=) = GFO(=).

Proof. Let C be in GFO(=) via a labeling scheme S = (φ, c) with 2k free variables and q quantified
variables. We show that there exists a quantifier-free formula ψ with 2k free variables which only
uses equality such that

(Nnc , a⃗) |= φ⇔ (Nnc , a⃗) |= ψ

holds for all nc > 2k + q and a⃗ ∈ [nc]2k0 . This implies that all graphs with more than α := c
√
2k + q

vertices in gr(S) are in gr(ψ, c) as well and therefore C>α ∈ GFOqf(=). Since GFOqf(=) is closed
under union (Lemma 3.5) and contains every singleton graph class, it follows that C is in GFOqf(=).
To prove that for every φ there exists an equivalent quantifier-free ψ, it suffices to prove this

for every φ of the form ∃z
∧l
i=1 Li where every Li is a literal and l ∈ N (see quantifier-elimination

[Smo91, p. 310]). Suppose φ has this form. We assume that φ is neither a tautology nor unsatisfiable,
otherwise we can define ψ as x = x for some free variable x or the negation thereof. If z does
not occur in any literal then we can simply remove the quantifier, i.e. ψ ≜

∧l
i=1 Li. Therefore we

assume z occurs in at least one literal. Assume z occurs in at least one positive literal Li ≜ z = x
for some free variable x. Then we can obtain ψ by removing the literal Li and replacing every
occurrence of z with x. If z only occurs in negative literals, this means in order to satisfy φ one
must assign z a value which, in the worst case, no other variable has. If the universe is sufficiently
large (n > α) then such a value always exists and therefore we can remove all literals containing z
and the existential quantifier.

Theorem 3.7. GFOqf(<) = GFOqf(<,+) = GFOqf(<,×) = GFO(<).

Proof. Obviously, GFOqf(<) is a subset of the other three classes since it is more restrictive. We
show that GFOqf(<,+) and GFOqf(<,×) are subsets of GFOqf(<) in Lemma 5.12. Here, we prove
that GFO(<) ⊆ GFOqf(<,+) and therefore the theorem holds.
Let ‘suc’ be the unary function which increments its argument by one if the resulting number

does not exceed the maximal element of the universe, otherwise it returns 0. Let GFO∞
(qf)(<, suc) be

the set of graph classes C for which there exists a (quantifier-free) logical labeling scheme S over
{<, suc} and C ⊆ gr∞(S).

GFO(<)
(1)

⊆ GFO(<, suc)
(2)

⊆ GFO∞(<, suc)
(3)

⊆ GFO∞
qf (<, suc)

(4)

⊆ GFOqf(<,+)

(1) Unlike in the case of GFO(=), quantifier elimination cannot be applied directly to GFO(<)
since the formula ∃z x < z ∧ z < y has no quantifier-free equivalent using only ‘<’. Instead, we
consider the fragment that is additionally equipped with ‘suc’.
(2) Suppose C is in GFO(<, suc) via the logical labeling scheme (φ, c) and φ has 2k free and

q quantified variables. We assume w.l.o.g. that φ is in prenex normal form, i.e. it has the form
Q1z1 . . . Qqzq ψ with Qi ∈ {∃,∀} and ψ is quantifier-free. Let Vu/Ve denote the set of univer-
sally/existentially quantified variables in φ and let

ϕ ≜ Q1z1 . . . Qqzq

( ∧
z∈Vu

¬c1 < z

)
→

(
ψ′ ∧

∧
z∈Ve

¬c1 < z

)

where c1 is a (pseudo) constant with the value nc and ψ′ is obtained by replacing every atomic
subformula in ψ by a guarded one (see the “⇒”-direction in the proof of Lemma 3.3). It holds that

(Nnc , a⃗) |= φ⇔ (N , a⃗) |= ϕ

for all n ∈ N and a⃗ ∈ [nc]2k0 and therefore C is in GFO∞(<, suc) via (ϕ, c). To see why this is the
case, consider the game-theoretical semantics of first-order logic.
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“⇒”: Suppose Eloise (the verifier) has a winning strategy for the left-hand side. We argue that
Eloise can also use this as a winning strategy for the right-hand side. If Abelard (the falsifier)
chooses a value larger than nc, Eloise immediately wins since the premise in ϕ becomes false. Thus,
Abelard must only choose values ≤ nc. Eloise chooses only values ≤ nc because the winning strategy
for the left-hand side cannot use larger values. If only values ≤ nc are ‘assigned’ to the quantified
variables then φ and ϕ behave identically and therefore Eloise wins.
“⇐”: Suppose Eloise has a winning strategy for the right-hand side. Eloise will never choose a

value larger than nc in this strategy since then Abelard could easily win because the conclusion in ϕ
becomes false. Therefore the same strategy can be played for the left-hand side.

(3) Suppose C is in GFO∞(<, suc) via (φ, c) and φ has 2k free variables. Due to Lemma 3.8 there
exist a quantifier-free formula ψ over {0, <, suc} with 2k free variables such that

(N , a⃗) |= φ⇔ (N , a⃗) |= ψ

holds for all a⃗ ∈ N2k
0 . We can modify the labeling scheme (ψ, c) by adding an additional variable

to each vertex which is promised to receive the value 0 in every labeling and use it to replace the
constant 0. It follows that C is in GFO∞

qf (<, suc) via (ψ, c).
(4) The expression suc(x) can be simulated by x+1 and the constant 1 can be realized by adding

an additional variable to each vertex. To prevent overflow when translating a labeling scheme (φ, c)
in GFO∞

qf (<, suc) to GFOqf(<,+), choose c + d as second component of the new logical labeling
scheme where d is the number of times ‘suc’ appears in φ.
(To see that this proof is not circular despite its forward reference to Lemma 3.8 and 5.12, the

reader can think of this theorem as appearing right before Theorem 5.16 since it is not used in any
other proof before that.)

Lemma 3.8. For every formula φ over the signature {0, <, suc} there exists an equivalent quantifier-
free formula ψ over the same signature, i.e. (N , a⃗) |= φ⇔ (N , a⃗) |= ψ holds for all a⃗ ∈ Nk0 where k
is the number of free variables in φ.

Proof. To prove that for every φ there exists an equivalent quantifier-free ψ, it suffices to prove this
for every φ of the form ∃z

∧l
i=1 Li where every Li is a literal and l ∈ N (see quantifier-elimination

[Smo91, p. 310]). There are the following 4 types of literals:

1. x+ i < y + j

2. x+ i = y + j

3. x+ i ≤ y + j (negation of <)

4. x+ i ̸= y + j (negation of =)

where x, y are variables or the constant 0 and i, j ∈ N0 (note: x+ i means suc is applied i times to
x). First, we argue why it suffices to consider only literals of the first two types (positive literals).
The idea is to rewrite literals of type 3. and 4. using disjunction (a ≤ b ⇔ a < b ∨ a = b and
a ̸= b ⇔ a < b ∨ b < a), then rearrange the formula φ such that it becomes a disjunction of
conjunctions and draw the existential quantifier inside the disjunction:

φ ≡ ∃z
∨
j

∧
i

Lji ≡
∨
j

∃z
∧
i

Lji

where Lji are appropriately chosen positive literals. Therefore it suffices to rewrite ∃z
∧
i L

j
i into

an equivalent quantifier-free formula for every j.
Due to the previous paragraph we can assume w.l.o.g. that φ ≜ ∃z

∧l
i=1 Li where every Li is a

positive literal. Next, we explain how to convert φ into an equivalent quantifier-free formula ψ. We
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assume that φ is neither unsatisfiable nor a tautology, otherwise it is trivial to write an equivalent
quantifier-free formula. Moreover, we assume that no literal contains the same variable more than
once, e.g. x < x+ 2 does not occur. We assume that z occurs in at least one literal since otherwise
we can simply remove the part ‘∃z’ from φ to obtain ψ. We distinguish the following two cases.

Case 1: there exists a literal z + i = x + j for some i, j ∈ N0. In this case replace z with
x + j − i in every literal, rearrange each literal so that it contains no negative term and then
remove the existential quantifier to obtain ψ. For example, a literal z + q < y + p would become
x+ j − i+ q < y + p and then x+ j + q < y + p+ i.
Case 2: z only occurs in literals with ‘<’. Let Xlt denote the set that consists of all pairs (x, k)

such that x is a free variable or the constant 0, k ∈ Z and there exists a literal x + i < z + j
with k = j − i in φ. Analogously, let Xgt denote the set that consists of all pairs (x, k) such that
there exists a literal z + j < x + i with k = j − i. Observe that a literal corresponding to the
pair (x, k) ∈ Xlt is satisfied iff x < z + k and a literal corresponding to (x, k) ∈ Xgt is satisfied iff
z + k < x. If Xgt is empty then we can simply remove every literal containing z from φ to obtain ψ
because there always exists a sufficiently large value for z that satisfies all constraints implied by Xlt.
Thus, we assume that Xgt is non-empty. If Xlt is empty then z can be replaced with the constant 0.
Therefore we assume Xlt is non-empty as well. We define ψ as conjunction of the literals in the sets
L1, L2 and L3:

� L1 := set of literals in φ that do not contain z

� L2 := literal equivalent to y −m < x− k − 1 for each (x, k) ∈ Xgt and (y,m) ∈ Xlt

� L3 := literal equivalent to k < x for each (x, k) ∈ Xgt

It remains to argue why φ and ψ are equivalent, i.e. for all a⃗ ∈ Nk0 it holds that

(N , a⃗) |= φ⇔ (N , a⃗) |= ψ

“⇒”: Let a⃗ ∈ Nk0 and let (N , a⃗) |= φ. We need to argue that all literals in L1, L2 and L3 are
satisfied. This implies (N , a⃗) |= ψ. For L1 this holds because all its literals occur in φ as well. Let L
be a literal in L2 via (x, k) ∈ Xgt and (y,m) ∈ Xlt. This means L is equivalent to y−m < x−k− 1.
The pair (x, k) implies z + k < x and the pair (y,m) implies y < z +m must hold in φ with respect
to the assignment a⃗. This means z < x− k and y −m < z and therefore y −m < z < x− k, which
implies y−m < x−k−1. Let L be a literal in L3 via (x, k) ∈ Xgt. The pair (x, k) implies z+k < x
and therefore k < x since z ≥ 0.

“⇐”: Let a⃗ ∈ Nk0 and let (N , a⃗) |= ψ. We argue that there exists a b ∈ N0 such that (N , a⃗) |= φ
where z is assigned the value b. We define b as minimum over {a(x)− k − 1 | (x, k) ∈ Xgt} where
a(x) denotes the value assigned to variable x in a⃗. It holds that b ≥ 0: assume that this is not the
case, i.e. b < 0. This would imply that there exists an (x, k) ∈ Xgt such that a(x)− k− 1 < 0, which
is equivalent to a(x) ≤ k. Since (N , a⃗) models ψ, the literal in L3 for (x, k) ∈ Xgt implies k < a(x),
contradiction.

All literals of φ not containing z are satisfied due to L1. Each literal containing z in φ corresponds
to either an element in Xgt or Xlt. Let (x, k) ∈ Xgt. This means z + k < x ⇔ z ≤ x− k − 1 and
therefore b ≤ a(x)− k − 1. Our choice of b satisfies this. Let (y,m) ∈ Xlt. This means y < z +m
resp. a(y) < b+m must hold. Due to L2 it holds that a(y)−m < a(x)−k−1 for every (x, k) ∈ Xgt.
Since b = a(x)− k− 1 for some (x, k) it follows that the literal for (y,m) ∈ Xlt in φ is satisfied.

Lastly, we show how equality-based labeling schemes can be expressed as quantifier-free labeling
schemes over {=} and vice versa. As a consequence, the result that interval graphs have no
equality-based labeling scheme from [HWZ22] implies that GFO(=) is a strict subset of GFO(<)
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Definition 3.9 ([HWZ22, Def. 2.4]). A graph class C is said to have a constant-size equality-based
labeling scheme (EBLS) if there exists s, k ∈ N and a set of functions Dp1,p2 : {0, 1}k×k → {0, 1}
for each p1, p2 ∈ {0, 1}s with the following property. For every graph G ∈ C there exists a labeling
ℓ : V (G) → {0, 1}s×Nk such that for all u ̸= v ∈ V (G) it holds that (u, v) ∈ E(G) iffDpu,pv(Qu,v) = 1
with ℓ(u) = (pu, u1, . . . , uk), ℓ(v) = (pv, v1, . . . , vk) and Qu,v ∈ {0, 1}k×k is defined as Qu,v(i, j) = 1
iff ui = vj . The s bit long string of the labeling is called the prefix of a vertex.

Theorem 3.10 ([HWZ22]). Interval graphs and permutation graphs do not have constant-size
EBLS.

Proof. Any graph class with unbounded chain number ([HWZ22, Def. 1.10]) does not have a
constant-size EBLS ([HWZ22, Prop. 2.8]); stable = bounded chain number. Interval graphs and
permutation graphs have unbounded chain number.

Lemma 3.11. A graph class has a constant-size EBLS iff it is in GFOqf(=).

Proof. “⇒”: Let C be a graph class with an EBLS via s, k ∈ N and functions Dp1,p2 for each
p1, p2 ∈ {0, 1}s. Let k′ = 1 + s + k. A logical labeling scheme (φ, k′) with 2k′ variables can
be constructed which shows that C is in GFOqf(=). Suppose a graph G with n vertices is in
C and thus representable by the EBLS via a labeling ℓ : V (G) → {0, 1}s × Nk. We can assume
w.l.o.g. that the image of ℓ—more specifically the Nk part—contains only numbers from [kn]
since at most k different numbers can be picked per vertex and the magnitude of the numbers is
irrelevant. Let ℓ′ : V (G) → [nk

′
]k

′
0 be defined as ℓ′(u) = (0, pu, u1, . . . , uk) for all u ∈ V (G) with

ℓ(u) = (pu, u1, . . . , uk). The formula φ can be defined such that it represents G via this labeling ℓ′.
For example, for two vertices u, v the i-th bit of the prefix of u (or v) is 0 iff x0 = xi (resp. y0 = yi),
assuming the variables in φ are named x0, . . . , xk′−1, y0, . . . , yk′−1.
“⇐”: Let C be in GFOqf(=) via a logical labeling scheme (φ, c) and φ has 2k variables

x1, . . . , xk, y1, . . . , yk. We classify an atomic formula in φ as cross-comparison if it is of the form
xi = yj and as self-comparison if it is of the form xi = xj or yi = yj for some i, j ∈ [k]. It
can be assumed w.l.o.g. that every variable either occurs only in cross-comparisons or only in
self-comparisons (this can always be achieved by adding new variables). The self-comparisons
correspond to the prefixes in an EBLS. To construct an EBLS for C, replace all self-comparisons
in φ with all combinations of true and false. This yields the different functions Dp1,p2 . For the
parameter s the maximum over sx and sy can be chosen where sx (sy) is the number of distinct
self-comparisons with xi’s (resp. yi’s).

Corollary 3.12. GFO(=) ⊊ GFOqf(<).

Proof. Interval graphs are in GFOqf(<) but not in GFO(=) due to Theorem 3.10, Lemma 3.11 and
Fact 3.6.

4 Polynomial-Boolean Systems

Line segment graphs, disk graphs and k-dot product graphs are factorial and hereditary but not
known to have a labeling scheme. All three share in common that they can be defined as the set of
induced subgraphs of some infinite graph H with vertex set Rk and two vertices in H are adjacent
iff they satisfy a certain combination of polynomial (in)equations over 2k variables for some k ∈ N.
Given a graph G, a mapping ℓ : V (G) → Rk showing that G is an induced subgraph of H is called a
realization of G. Graph classes that can be described in such a way are known as semi-algebraic
graph classes (see e.g. [Fox+14]).

It can be shown that it suffices to use rationals instead of reals to define the three aforementioned
graph classes by a perturbation argument, i.e. V (H) = Qk; let us call such semi-algebraic graph
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classes rational. A natural question that arises is how many bits are required to represent each
rational in some realization of a graph with n vertices from such a class. McDiarmid and Müller
have shown that line segment and disk graphs require at least 2Ω(n) bits and that this also suffices for
every such graph, i.e. the bound is tight [MM13]. Kang and Müller have shown that the same (upper
and lower) bound holds for k-dot product graphs [KM12]. Therefore the labeling schemes induced
by the definitions of these graph classes do not represent them since they allow only O(log n) bits
per rational. It is unclear whether every semi-algebraic graph class is rational. On a related note, we
show that natural numbers suffice to represent rational semi-algebraic graph classes (Lemma 4.3).

This way of defining graph classes can be formalized by polynomial-boolean systems (PBS). Such
a system consists of a sequence of 2k-variate polynomials that are compared with each other and
a boolean function that determines adjacency from these comparisons. Any graph class that can
be defined in terms of a PBS is factorial and hereditary; however, not every factorial, hereditary
graph class is semi-algebraic (Lemma 4.2). Therefore it provides a source of candidates for graph
classes that could have a labeling scheme. It is not difficult to see that PBS are isomorphic to
quantifier-free logical labeling schemes (Lemma 4.4). Every rational semi-algebraic graph class
can be expressed as the hereditary closure of some graph class in GFOqf (Fact 4.6). This yields
the following amplification result: if GFO(<) = GFOqf then GFO(<) equals the set of rational
semi-algebraic graph classes (Corollary 4.8).
In our context, we consider a polynomial to be a function that can be defined as an expression

consisting of variables, addition and multiplication. This implies that the coefficients of a polynomial
must be natural. This does not affect the set of graph classes that be represented by a PBS since
coefficients outside of N0 can be mimicked by adding additional variables.

Definition 4.1. Let X ∈ {N0,Z,Q,R}. A polynomial-boolean system (PBS) is a tuple (P, f) where
P is a sequence of q polynomials with signature X2k → X and f is a q2-ary boolean function for
some k, q ∈ N. We define gr(P, f) as the following set of graphs. A graph G with n vertices is in
gr(P, f) iff there exists a labeling ℓ : V (G) → Xk such that for all u ̸= v ∈ V (G) it holds that

(u, v) ∈ E(G) ⇔ f(x1,1, . . . , xq,q) = 1

where xi,j := Jpi(ℓ(u), ℓ(v)) < pj(ℓ(u), ℓ(v))K for i, j ∈ [q] and pi denotes the i-th polynomial in the
sequence P .
A graph class C is in PBS(X) if there exists a PBS (P, f) with polynomials over X such that

C ⊆ gr(P, f). If X = N0, we also write PBS instead of PBS(N0).

A graph class is called semi-algebraic if it is in PBS(R). A semi-algebraic graph class is called
rational if it is in PBS(Q). It is easy to see that PBS(N0) ⊆ PBS(Z) ⊆ PBS(Q) ⊆ PBS(R). Line
segment graphs, disk graphs and k-dot product graphs are in PBS(Q) since their definitions can be
expressed as PBS.

Lemma 4.2. PBS(R) ⊊ [Factorial ∩ Hereditary]⊆.

Proof. It follows from Warren’s theorem that semi-algebraic graph classes are at most factorial (see
[Spi03, p. 54]). Therefore they are a subset of [Factorial ∩ Hereditary]⊆. The number of polynomial-
boolean systems is countable since each polynomial and boolean function can be described by a
finite string (for polynomials see the remark before Definition 4.1). From Lemma 2.4 it follows that
there exists a factorial, hereditary graph class that is not semi-algebraic.

The following theorem shows that choosing between polynomials over N0, Z or Q does not make
a difference, i.e. they all lead to the same set of graphs classes. Therefore we simply write PBS to
denote the set of rational semi-algebraic graph classes in the following.

Theorem 4.3. PBS := PBS(N0) = PBS(Z) = PBS(Q).
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Proof. We argue that PBS(Q) ⊆ PBS(N0) in two steps. First, we show that PBS(Q) ⊆ PBS(Q+)
where Q+ = {x ∈ Q | x ≥ 0} (1). Secondly, we argue why PBS(Q+) ⊆ PBS(N0) (2).

(1) Let C ∈ PBS(Q) via a PBS (P, f) where P is a sequence of q 2k-ary polynomials over
Q. We outline a PBS (P ′, f ′) over Q+ which shows that C is in PBS(Q+). This construction
relies on the following observation. Given a ∈ Q let |a| denote its absolute value and sign(a)
equals −1 if a is negative and 1 otherwise. For n ∈ N and a⃗ ∈ Qn let |⃗a| = (|a1|, . . . , |an|) and
sign(⃗a) = (sign(a1), . . . , sign(an)). For all polynomials p, q : Qn → Q and sign patterns s⃗ ∈ {−1, 1}n
there exist polynomials p′, q′ : Qn

+ → Q+ such that for all a⃗ ∈ Qn with sign(⃗a) = s⃗ it holds that
p(⃗a) < q(⃗a) iff p′(|⃗a|) < q′(|⃗a|). For example, consider the polynomials p(x, y, z) = x2y3z + y and
q(x, y, z) = z and the sign pattern (−1, 1,−1) for (x, y, z). If we only consider inputs with this sign
pattern then it holds that p(x, y, z) < q(x, y, z) iff |y|+ |z|︸ ︷︷ ︸

p′

< |x|2|y|3|z|︸ ︷︷ ︸
q′

.

For each variable in (P, f) we have two variables in the new PBS (P ′, f ′). The first one is used to
store the absolute value of the original variable and the second one encodes the sign. Let G be a graph
that is in gr(P, f) via a labeling ℓ : V (G) → Qk. We derive the following labeling ℓ′ : V (G) → Q2k

+

from ℓ. Given u ∈ V (G) let ℓ(u) = (u1, . . . , uk). We set ℓ′(u) = (|u1|, u′1, . . . , |uk|, u′k) where u′i = |ui|
if ui is negative and any other non-negative value if ui is positive. This allows us to infer the sign
pattern and absolute values of the original labeling ℓ from ℓ′.
The PBS (P ′, f ′) is constructed such that G ∈ gr(P ′, f ′) via ℓ′. The adjacency of two vertices

u and v depends on the results of pi(ℓ(u), ℓ(v)) < pj(ℓ(u), ℓ(v)) for i, j ∈ [q]. The result of these
inequations is determined by checking p′(|ℓ(u)|, |ℓ(v)|) < q′(|ℓ(u)|, |ℓ(v)|) in (P ′, f ′) where p′ and q′

depend on pi, pj and the sign pattern of ℓ(u), ℓ(v). This means for every pair i, j ∈ [q] and every sign
pattern s ∈ {−1, 1}2k there is a pair of polynomials in P ′ and additionally P ′ has the polynomials
p(x1, . . . , x4k) = xi for i ∈ [4k] to decode the signs.

(2) To see that PBS(Q+) ⊆ PBS(N0) it suffices to make the following observation. For all polynomi-
als p, q : Qk

+ → Q+ there exist polynomials p′, q′ : N2k
0 → N0 such that for all a⃗ = (a1b1 , . . . ,

ak
bk
) ∈ Qk

+

it holds that p(⃗a) < q(⃗a) iff p′(a1, b1, . . . , ak, bk) < q′(a1, b1, . . . , ak, bk). The functions p′ and q′ can
be obtained from the inequation p < q by multiplying with the denominators. Therefore a PBS
(P, f) over Q+ with 2k variables can be translated into a PBS (P ′, f ′) over N0 with 4k variables
such that gr(P, f) ⊆ gr(P ′, f ′).

Lemma 4.4. A graph class C is in PBS iff there exists a quantifier-free logical labeling scheme S
such that C ⊆ grp(S).

Proof. “⇒”: Let (P, f) be a PBS where P is a sequence of q polynomials over N0. The PBS
(P, f) can be directly encoded as quantifier-free logical labeling scheme S = (φ, 1). Each of the q2

inequations of (P, f) is an atomic formula in φ and the propositional part of φ must represent the
boolean function f . It follows that gr(P, f) ⊆ grp(S).
“⇐”: Let S = (φ, c) be a quantifier-free logical labeling scheme. The value c is irrelevant since it

does not affect grp(S). Every atomic formula in φ is of the form p < q or p = q where p and q are
expressions over addition and multiplication and therefore represent polynomials. Choose these as
sequence of polynomials P and define f in terms of the boolean formula that is obtained by replacing
every atomic formula in φ with a propositional variable. It follows that grp(S) ⊆ gr(P, f).

Corollary 4.5. GFOqf ⊆ PBS ⊆ PBS(R) ⊊ [Factorial ∩ Hereditary]⊆.

Proof. The inclusion GFOqf ⊆ PBS holds for the following reason. Suppose C is in GFOqf . Due to
Lemma 3.3 there exists a quantifier-free logical labeling scheme S such that C ⊆ gr∞(S). From that
and Lemma 4.4 it directly follows that C is in PBS since gr∞(S) ⊆ grp(S). The third inclusion is
Lemma 4.2.
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One can also characterize PBS as the set of graph classes that occur as subset of the hereditary
closure of some graph class in GFOqf since the hereditary closure enables one to sidestep the size
limitation of the labeling by choosing a sufficiently large graph to increase the maximal value allowed
in the labeling and then taking the relevant subgraph. An interesting consequence of this is that
GFOqf = PBS if GFOqf is closed under hereditary closure.

Fact 4.6. A graph class C is in PBS iff there exists a graph class D in GFOqf such that C ⊆ [D]hc.

Proof. “⇒”: Let C ∈ PBS. Due to Lemma 4.4 there exists a quantifier-free logical labeling scheme
(φ, 1) such that C ⊆ grp(φ, 1). We show that every graph in C occurs as induced subgraph of some
graph in gr∞(φ, 1) and gr∞(φ, 1) is in GFOqf due to Lemma 3.3.
Let G ∈ C. This means G ∈ grp(φ, 1) via some labeling ℓ : V (G) → Nk0. Let r be the maximal

value in the image of ℓ. Let H be a graph with r vertices whose vertex set is a superset of V (G) and
that is in gr∞(φ, 1) via the labeling ℓ′ : V (H) → [r]k0 with ℓ′(v) = ℓ(v) if v ∈ V (G) and (0, . . . , 0)
otherwise. Clearly, G is an induced subgraph of H.
“⇐”: Let C and D be graph classes such that D ∈ GFOqf and C ⊆ [D]hc. Since GFOqf ⊆ PBS

(Corollary 4.5) it follows that D ∈ PBS. And since PBS is trivially closed under hereditary closure
and subsets it follows that [D]hc and therefore C is in PBS.

Lemma 4.7. GFOqf(<) is closed under hereditary closure.

Proof. We need to show that for every graph class C ∈ GFOqf(<) its hereditary closure [C]hc is in
GFOqf(<). Let C be in GFOqf(<) via a logical labeling scheme (φ, c) and φ has 2k free variables.
We show that [C]hc ⊆ gr(φ, k) and therefore [C]hc is in GFOqf(<).

Let G be a graph in C with n vertices. Since G ∈ C there exists a labeling ℓ : V (G) → [nc]k0 which
witnesses that G is in gr(φ, c). We convert ℓ into a ‘normalized’ labeling ℓ0 such that the maximal
value in the image of ℓ0 is at most kn. Let {x1, . . . , xr} denote the subset of numbers from [nc]0
that occur in the image of ℓ, i.e. for every i ∈ [r] there exists a v ∈ V (G) and j ∈ [k] such that
xi = ℓj(v). Assume the xi’s are ordered, i.e. x1 < x2 < · · · < xr. Replace the numbers in the image
of ℓ with their index minus one, i.e. xi becomes i− 1 and call the new labeling ℓ0. Observe that ℓ0
is a correct labeling for G since the order relation is maintained by the renumbering, i.e. xi < xj
iff i− 1 < j − 1. Moreover, the image of ℓ can contain at most kn different values (r ≤ kn) which
limits the maximal value in the image of ℓ0.

Let H be an induced subgraph of G with m > 1 vertices. Take the labeling ℓ for G, restrict it to
the vertices in H and normalize it as described above. The restricted labeling contains at most km
different values and therefore the maximal value in the image of the normalized labeling is at most
km, which does not exceed mk. Thus, it witnesses that H is in gr(φ, k).

Corollary 4.8. If GFOqf(<) = GFOqf then GFOqf(<) = PBS.

Proof. Let C ∈ PBS. From Fact 4.6 it follows that there exists a graph class D ∈ GFOqf such that
C ⊆ [D]hc. Assuming GFOqf(<) = GFOqf , this means D is in GFOqf(<) and therefore [D]hc is in it
as well due to Lemma 4.7. Due to closure under subsets it follows that C is in GFOqf(<).

Therefore in order to prove that GFOqf(<) ̸= GFOqf it suffices to show that GFOqf(<) ̸= PBS.

5 Algebraic Reductions

Consider the relation between interval and box graphs. Every box graph can be expressed by
intersecting the edge relation of two interval graphs as depicted in Figure 2 since every box can
be represented by two intervals. Also, every planar graph can be expressed by taking the union of
the edge relation of three forests since planar graphs have arboricity at most 3. Additionally, every
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Figure 2: Box graph as conjunction of two interval graphs

forest is a box graph. It follows that every planar graph can be expressed in terms of 6 interval
graphs as

∨3
i=1 Interval ∧ Interval. One could say that the adjacency structure of planar graphs

is not more complex than that of interval graphs in a sense since the former can be expressed as
boolean combination of the latter.
We would like to relate the difficulty of finding a labeling scheme with a label decoder of a

particular complexity for one graph class to another. For instance, saying that C reduces to D
(C ≤ D) should mean that a labeling scheme for D can be translated to a labeling scheme for C
with the same complexity. The crucial property required of such a reduction notion is that the
different sets of graph classes that we consider must be closed under it, i.e. C ≤ D and D ∈ GA
implies C ∈ GA. It can also be used to relate graph classes without labeling schemes. For instance,
if one could reduce two graph classes not known to have labeling schemes to each other, this would
imply that there is a common obstacle that makes finding a labeling scheme for them difficult.

This section is structured as follows. We define an interpretation of conjunction, disjunction and
negation on graph classes (Definition 5.1) and show that if two boolean formulas represent the
same boolean function then their interpretation over graph classes coincides as well, provided every
variable occurs at most once in each formula (Corollary 5.4). Definition 5.5 formalizes algebraic
reductions ≤BF. All sets of graph classes considered here are closed under ≤BF-reductions (Fact 5.7
& 5.8). We call a graph class C ≤BF-complete for a set of graph classes X if C is in X (membership)
and every graph class in X reduces to C (hardness). This means the adjacency structure of every
graph class in X can be expressed as boolean combination of graphs from C. Therefore we are
interested in determining which sets of graph classes have a complete graph class.
The set [Factorial ∩ Hereditary]⊆ has no ≤BF-complete graph class and GAC0 has no hereditary

≤BF-complete graph class (Fact 5.9 & 5.10). On the other hand, we show that so called dichotomic
and linear neighborhood graphs are complete for GFO(=) and GFO(<) (Theorem 5.14 & 5.16).
These completeness results follow from the tight correspondence between algebraic reductions and
quantifier-free logical labeling schemes (Lemma 5.11).

Forests and interval graphs are well-studied graph classes that lie in GFO(=) and GFO(<), which
begs the question whether they are ≤BF-complete for them. It trivially holds that they are not since
they are undirected (see the paragraph preceding Theorem 5.17). If we restrict GFO(=) and GFO(<)
to undirected graph classes, however, then the answers are not as obvious. We show that forests
and, in fact, any uniformly sparse graph class fails to be ≤BF-complete for the set of undirected
graph classes in GFO(=) (Theorem 5.17). For interval graphs it is not even clear if k-interval graphs
reduce to them.

Definition 5.1. We define negation, conjunction and disjunction on graphs and graph classes as
follows. Let G,H be graphs over the same vertex set V .

¬G := (V, {(u, v) | u ̸= v ∈ V } \ E(G)) (edge-complement without self-loops)

G ∧H := (V,E(G) ∩ E(H)) (intersection of edges in G and H)

G ∨H := (V,E(G) ∪ E(H)) (union of edges in G and H)
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Let C,D be graph classes.

¬C := {¬G | G ∈ C} = co-C
C ◦ D := {G ◦H | G ∈ C, H ∈ D and V (G) = V (H)} for ◦ ∈ {∨,∧}

Let φ be a boolean formula with k variables. We write φ(C1, . . . , Ck) to denote the graph class that
results from evaluating φ for the graph classes C1, . . . , Ck.

A graph G has arboricity at most k iff G ∈
∨k
i=1 Forest, it has thickness at most k iff G ∈∨k

i=1 Planar and it has boxicity at most k iff G ∈
∧k
i=1 Interval.

This definition induces an algebra on graph classes, which satisfies some laws of boolean algebra.
For instance, negation is an involution (¬¬C = C) and conjunction and disjunction are commutative
and associative. But C ∨ C = C does not hold for all graph classes C because Forest ∨ Forest is the
class of graphs with arboricity at most two, which contains the complete graph on 3 vertices K3.
The next lemma implies that all laws of boolean algebra where each variable occurs only once on
each side of the equation are satisfied.

Definition 5.2. Let f be a k-ary boolean function. We define the functions f ′ and f ′′ based on f
as follows. Let G1, . . . , Gk be graphs on the same vertex set V . Then f ′(G1, . . . , Gk) is defined as
the graph G = (V,E) with (u, v) ∈ E iff u ̸= v and f(x1, . . . , xk) = 1 where xi := J(u, v) ∈ E(Gi)K
for i ∈ [k] and u, v ∈ V . Let C1, . . . , Ck be graph classes. Then f ′′(C1, . . . , Ck) is defined as the graph
class: {

G | ∃(G1, . . . , Gk) ∈ C1 × · · · × Ck on vertex set V (G) s.t. G = f ′(G1, . . . , Gk)
}

Lemma 5.3. Let φ be a boolean formula with k variables where each variable occurs at most once
and let fφ be the k-ary boolean function that is represented by φ. It holds that φ(C1, . . . , Ck) =
f ′′φ(C1, . . . , Ck) for all graph classes C1, . . . , Ck.

Proof. We write C⃗ to abbreviate (C1, . . . , Ck) and C⃗× for C1 × · · · × Ck.
We show this using structural induction over φ. Suppose φ uses the variables x1, . . . , xk. The base

case is projection, i.e. φ ≜ xi for some i ∈ [k]. It holds that φ(C⃗) = Ci by definition and Ci = f ′′φ(C⃗)
directly follows from the definition of f ′′φ. For the induction step we have to consider ¬, ∧ and

∨. Let us start with negation. Suppose φ ≜ ¬ψ. Due to the induction hypothesis it holds that
ψ(C⃗) = f ′′ψ(C⃗). Therefore φ(C⃗) = ¬f ′′ψ(C⃗). It remains to argue that f ′′φ(C⃗) = ¬f ′′ψ(C⃗), which holds iff:

G ∈ f ′′φ(C⃗) ⇔ ¬G ∈ f ′′ψ(C⃗)

Let G ∈ f ′′φ(C⃗). This holds iff there exist (G1, . . . , Gk) ∈ C⃗× such that G = f ′φ(G1, . . . , Gk). It holds

that f ′ψ(G1, . . . , Gk) = ¬G since fφ(x1, . . . , xk) = 1 ⇔ fψ(x1, . . . , xk) = 0 and therefore ¬G ∈ f ′′ψ(C⃗).
Suppose that φ ≜ ψ1 ∧ ψ2. Since every variable occurs at most once in φ we can assume

w.l.o.g. that ψ1 references only (at most) the first l variables of φ and ψ2 the last k − l variables
for some l ∈ [k − 1]. Due to the induction hypothesis it holds that ψi(C⃗) = f ′′ψi

(C⃗) for i ∈ {1, 2}.
Therefore φ(C⃗) = f ′′ψ1

(C⃗) ∧ f ′′ψ2
(C⃗). It remains to argue that f ′′φ(C⃗) = f ′′ψ1

(C⃗) ∧ f ′′ψ2
(C⃗).

G ∈ f ′′φ(C⃗)

⇔∃(G1, . . . , Gk) ∈ C⃗× : G = f ′φ(G1, . . . , Gk)

⇔∃(G1, . . . , Gk) ∈ C⃗× : G = f ′ψ1
(G1, . . . , Gk) ∧ f ′ψ2

(G1, . . . , Gk)

⇔∃(H1, . . . ,Hk), (J1, . . . , Jk) ∈ C⃗× : G = f ′ψ1
(H1, . . . ,Hk) ∧ f ′ψ2

(J1, . . . , Jk)

⇔G ∈ f ′′ψ1
(C⃗) ∧ f ′′ψ2

(C⃗)
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The second equivalence holds because fφ(x1, . . . , xk) is true iff fψ1(x1, . . . , xk) and fψ2(x1, . . . , xk)
are true. Let us explain why the fourth statement implies the third statement. Assume G =
f ′ψ1

(H1, . . . ,Hk) ∧ f ′ψ2
(J1, . . . , Jk). Then

G = f ′ψ1
(H1, . . . ,Hl, Jl+1, . . . , Jk) ∧ f ′ψ2

(H1, . . . ,Hl, Jl+1, . . . , Jk)

because f ′ψ1
and f ′ψ2

only depend on the first l and last k − l parameters, respectively. Stated

differently, choose (H1, . . . ,Hl, Jl+1, . . . , Jk) ∈ C⃗× as witness for the third statement.
An analogous argument can be made for ∨.

Corollary 5.4. Let φ,ψ be boolean formulas with k variables where every variable occurs at
most once. If φ and ψ are logically equivalent then they are equivalent on graph classes as well,
i.e. φ(C1, . . . , Ck) = ψ(C1, . . . , Ck) holds for all graph classes C1, . . . , Ck.

Proof. It holds that φ(C1, . . . , Ck) = f ′′φ(C1, . . . , Ck) and ψ(C1, . . . , Ck) = f ′′ψ(C1, . . . , Ck) where fφ and
fψ are the k-ary boolean functions represented by φ and ψ (Lemma 5.3). Since φ and ψ are logically
equivalent fφ = fψ and therefore f ′′φ = f ′′ψ.

Definition 5.5 (Algebraic Reduction). Let C,D be graph classes. We say C reduces to D, in
symbols C ≤BF D, if there exists a boolean formula φ such that C ⊆ φ(D, . . . ,D). A set of graph
classes A is closed under ≤BF-reductions if C ≤BF D and D ∈ A implies C ∈ A. A graph class C is
≤BF-complete for a set of graph classes A if C ∈ A and every graph class in A reduces to C. We
write [C]BF to denote the set of graph classes that reduce to C.

It is easy to verify that ≤BF is reflexive and transitive. Reflexivity follows from the fact that
C ⊆ D implies C ≤BF D.
The argument that planar graphs reduce to interval graphs which we made at the beginning of

this section can be generalized to arbitrary uniformly sparse graph classes since every such graph
class has bounded arboricity and therefore can be expressed as

∨k
i=1 Interval ∧ Interval for some k.

In the following we show that all sets of graph classes considered here are closed under ≤BF.

Lemma 5.6. A set of graph classes A is closed under ≤BF-reductions if it is closed under subsets,
negation and conjunction, i.e. A = [A]⊆ and for all graph classes C,D ∈ A it holds that ¬C, C∧D ∈ A.

Proof. Assume A is closed under subsets, negation and conjunction. Let C ≤BF D via a boolean
formula φ (C ⊆ φ(D, . . . ,D)) and D ∈ A. If a variable occurs more than once in φ, rename it to
make each variable occur at most once. Since D is inserted for each variable during evaluation
this does not affect the resulting graph class. Due to Corollary 5.4 we can replace each occurrence
x ∨ y in φ with ¬(¬x ∧ ¬y). Since A is closed under negation and conjunction it follows that
φ(D, . . . ,D) ∈ A and therefore C ∈ A due to closure under subsets.

Fact 5.7. GAC0,GP,GEXP,GR,GALL and [Factorial∩Hereditary]⊆ are closed under ≤BF-reductions.

Proof. We show that all classes satisfy the premise of Lemma 5.6. All of them are closed under
subsets by definition. For all G· classes closure under negation follows from closure under complement
of the sets of languages from which they are derived and closure under conjunction follows from
combining two labeling schemes. Given two labeling schemes S1 = (F1, c1), S2 = (F2, c2) let
S3 = (F3, c1 + c2) with F3 = {(x1x2, y1y2) | ∃n ∈ N ∀i ∈ {1, 2} : xi, yi ∈ {0, 1}cin ∧ (xi, yi) ∈ Fi}. It
holds that gr(S1) ∧ gr(S2) = gr(S3) and the computational complexity of F3 is the same as of F1

and F2.
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For [Factorial ∩ Hereditary]⊆ it suffices to consider only hereditary graph classes to prove that it
is closed under negation and conjunction. Let C ∈ [Factorial ∩ Hereditary]⊆. Then its hereditary
closure [C]hc is in [Factorial ∩ Hereditary]⊆ by definition and if ¬[C]hc is in [Factorial ∩ Hereditary]⊆
then ¬C must be as well since it is a subset of ¬[C]hc. An analogous argument can be made for ∧.
The complement of a factorial, hereditary graph class remains factorial and hereditary. Thus,

[Factorial ∩ Hereditary]⊆ is closed under negation. Suppose C,D are factorial, hereditary graph
classes. We argue that C ∧ D is factorial and hereditary as well. A graph in C ∧ D on n vertices is
determined by choosing a graph with n vertices from C and D. Therefore C ∧ D contains at most
nO(n) · nO(n) = nO(n) graphs which makes it factorial. Assume G ∈ C ∧ D via the graphs H1, H2,
i.e. G = H1 ∧H2. Then every induced subgraph of G is in C ∧ D by choosing the corresponding
induced subgraphs of H1 and H2. Therefore C ∧ D is hereditary.

Fact 5.8. GFOqf(σ), GFO(σ) and PBS are closed under ≤BF-reductions for all σ ⊆ {<,+,×}.

Proof. Suppose C ≤BF D via a boolean formula φ with l variables (C ⊆ φ(D, . . . ,D)) and S = (ψ, c)
is a logical labeling scheme with D ⊆ gr(S) and ψ has 2k free variables. We construct a logical
labeling scheme S′ = (ϕ, c) where ϕ has 2kl free variables such that C ⊆ gr(S′). Let

ϕ(x⃗1, . . . , x⃗l, y⃗1, . . . , y⃗l) ≜ φ(ψ(x⃗1, y⃗1), . . . , ψ(x⃗l, y⃗l))

where x⃗i and y⃗i represent k variables for each i ∈ [l].
Now, we argue why C ⊆ gr(S′) holds. Suppose G ∈ C. This implies there exist H1, . . . ,Hl ∈ D

with the same vertex set as G such that for all u ̸= v ∈ V (G) it holds that

(u, v) ∈ E(G) ⇔ fφ(x1, . . . , xl) = 1 with xi := J(u, v) ∈ E(Hi)K for i ∈ [l]

due to Lemma 5.3. Since Hi ∈ D there exists a labeling ℓi : V (G) → [nc]k0 for every i ∈ [l] which
witnesses that Hi is in gr(S). It holds that G is in gr(S′) via the labeling ℓ(v) := (ℓ1(v), . . . , ℓl(v)).
Since ϕ does not contain any quantifiers or function/relation symbols that were not already present
in ψ, it follows that S′ shows that GFOqf(σ) and GFO(σ) are closed under ≤BF-reductions. The
same construction works for PBS.

The fact that all these sets of graph classes are closed under ≤BF-reductions suggests that algebraic
reductions are a sensible notion of reduction for graph classes in the context of labeling schemes.
Before we continue with treating completeness, let us give an example of a set of graph classes that
is not closed under ≤BF-reductions: the set of all graph classes with bounded clique-width. Since
the closure of path graphs under disjoint union—let’s call it P—has bounded clique-width and
every grid graph can be expressed as disjunction of two graphs from P, it follows that grid graphs
reduce to P . Assuming closure, this would imply that grid graphs have bounded clique-width which
is false.

Fact 5.9. There exists no graph class that is ≤BF-complete for [Factorial ∩ Hereditary]⊆.

Proof. Suppose C is ≤BF-complete for [Factorial ∩ Hereditary]⊆. This implies that every factorial,
hereditary graph class is a subset of some graph class from {φ1(C, . . . , C), φ2(C, . . . , C), . . . } where
φ1, φ2, . . . is the set of all boolean formulas. Fact 5.7 implies that each graph class in this set is
factorial. This contradicts Lemma 2.4.

Fact 5.10. There exists no hereditary graph class that is ≤BF-complete for GAC0.

Proof. For the sake of contradiction, assume there exists a hereditary graph class C that is ≤BF-
complete for GAC0. Since C ∈ GAC0 it must hold that C is factorial. This implies C ∈ [Factorial ∩
Hereditary]⊆ and since this set of graph classes is closed under ≤BF-reductions (Fact 5.8) this implies
GAC0 ⊆ [Factorial ∩ Hereditary]⊆ which contradicts Fact 2.6.
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Perhaps not so surprisingly, quantifier-free logical labeling schemes and algebraic reductions are
closely related. Replace the atomic formulas in such a labeling scheme with propositional variables.
The resulting boolean formula yields the same graph class as the labeling scheme when the graph
classes which are represented by the atomic formulas are plugged in for the propositional variables.
We call a logical labeling scheme (φ, c) atomic if φ is an atomic formula, i.e. it contains no boolean
connectives and quantifiers.

Lemma 5.11 (Algebraic Interpretation). Let σ ⊆ {<,+,×} s.t. σ = ∅ or σ contains ‘<’. A graph
class C is in GFOqf(σ) iff there exist atomic labeling schemes S1, . . . , Sa over σ and a boolean formula
φ with a variables such that C ⊆ φ(gr∞(S1), . . . , gr∞(Sa)).

Proof. “⇒”: Let C be in GFOqf(σ). Due to Lemma 3.3 there exists a quantifier-free logical labeling
scheme S = (ψ, c) over σ such that C ⊆ gr∞(S). Let A1, . . . , Aa be the atomic formulas of ψ and
let φ be the boolean formula with a variables that results from replacing every atomic formula in ψ
with a propositional variable. We assume w.l.o.g. that ψ has 2ak variables xij , y

i
j for i ∈ [a], j ∈ [k]

and the variables used in every atomic formula Ai are a subset of
{
xij , y

i
j | j ∈ [k]

}
. This implies

that every variable of ψ occurs in at most one atomic formula.
We claim that C ⊆ φ(gr∞(A1, c), . . . , gr∞(Aa, c)). Let fφ be the a-ary boolean function represented

by φ. Due to Lemma 5.3 it holds that φ(gr∞(A1, c), . . . , gr∞(Aa, c)) = f ′′φ(gr∞(A1, c), . . . , gr∞(Aa, c)).
Let G be a graph in C. We need to show that:

G ∈ f ′′φ(gr∞(A1, c), . . . , gr∞(Aa, c))

This requires us to show that there exist graphs G1, . . . , Ga over the vertex set V (G) such that
G = f ′φ(G1, . . . , Ga) and Gi ∈ gr∞(Ai, c) for all i ∈ [a]. Since G is in C there exist labelings

ℓi : V (G) → [nc]k0 for every i ∈ [a] such that

(u, v) ∈ E(G) ⇔ fφ(x1, . . . , xa) = 1 with xi := J(N , ℓi(u), ℓi(v)) |= AiK

holds for all u ̸= v ∈ V (G). Let Gi be the graph with the same vertex set as G and there is an edge
(u, v) ∈ E(Gi) iff (N , ℓi(u), ℓi(v)) |= Ai for all i ∈ [a] and u ̸= v. Then G = f ′φ(G1, . . . , Ga) holds by
definition and Gi ∈ gr∞(Ai, c) via ℓi for all i ∈ [a].
“⇐”: Suppose C ⊆ φ(gr∞(S1), . . . , gr∞(Sa)). Since GFOqf(σ) is closed under union (Lemma 3.5)

it holds that D =
a⋃
i=1

gr∞(Si) is in GFOqf(σ). This implies C ≤BF D via φ because C ⊆ φ(D, . . . ,D).

Therefore C is in GFOqf(σ) due to closure under ≤BF-reductions (Fact 5.8).

Lemma 5.12. GFOqf(<,+) and GFOqf(<,×) are subsets of GFOqf(<).

Proof. To prove that GFOqf(<,α) is a subset of GFOqf(<) for α ∈ {+,×} we argue that it suffices
to show that gr∞(S) ∈ GFOqf(<) for every atomic labeling scheme S over {<,α}. Assume that is
the case. Given a graph class C ∈ GFOqf(<,α), there exist atomic labeling schemes S1, . . . , Sa over
{<,α} and a boolean formula φ such that C ⊆ φ(gr∞(S1), . . . , gr∞(Sa)) due to Lemma 5.11. By
assumption it holds that gr∞(S1), . . . , gr∞(Sa) are in GFOqf(<) and therefore D =

⋃k
i=1 gr∞(Si)

is in GFOqf(<) due to closure under union (Lemma 3.5). It holds that C ≤BF D via φ and due to
closure under ≤BF-reductions (Fact 5.8) it follows that C ∈ GFOqf(<).
Let S = (φ, c) be an atomic labeling scheme over {<,α}. We argue that gr∞(S) is in GFOqf(<)

via a logical labeling scheme S′ that we will construct. Using gr∞(S) instead of gr(S) allows us to
assume that addition and multiplication are associative. Assume φ has variables x1, . . . , xk, y1, . . . , yk.
The idea is to rearrange the (in)equation such that the variables x1, . . . , xk are on one side of the
(in)equation and y1, . . . , yk are on the other side. This allows us to precompute the required values
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in the labeling for S′. Let us show how this works in detail when α is ‘+’ and φ uses ‘<’. In that
case φ is a linear inequation and can be written as

k∑
i=1

aixi + biyi <
k∑
i=1

cixi + diyi

for some ai, bi, ci, di ∈ N0 for i ∈ [k]. This can be rewritten as:

k∑
i=1

(ai − ci)xi︸ ︷︷ ︸
ln(x1,...,xk)

<
k∑
i=1

(di − bi)yi︸ ︷︷ ︸
rn(y1,...,yk)

For n ∈ N let ln, rn be the functions induced by the left-hand and right-hand expression with signature
[nc]k0 → R. Let En be the union of the image of ln and the image of rn. Let En = {e1, . . . , ezn} for

some zn ∈ N and e1 < e2 < · · · < ezn . For all n ∈ N, a⃗, b⃗ ∈ [nc]k0 and ei = ln(⃗a), ej = rn(⃗b) it holds
that:

(N , a⃗, b⃗) |= φ⇔ ln(⃗a) < rn(⃗b) ⇔ ei < ej ⇔ i < j

Let S′ = (ψ, d) where ψ(x1, x2, y1, y2) ≜ x1 < y2 and d = 2k(c+ 1). We show that gr∞(S) ⊆ gr(S′).
Consider a graph G on n vertices that is in gr∞(S) via a labeling ℓ : V (G) → [nc]k0. We construct

a labeling ℓ′ : V (G) → [nd]
2
0 which shows that G is in gr(S′). For u ∈ V (G) let ℓ′(u) = (i, j) with

ei = ln(ℓ(u)) and ej = rn(ℓ(u)). For all u ̸= v ∈ V (G) it holds that

(u, v) ∈ E(G) ⇔ (N , ℓ(u), ℓ(v)) |= φ

⇔ ln(ℓ(u)) < rn(ℓ(v))

⇔ ℓ′1(u) < ℓ′2(v)

⇔ (N , ℓ′(u), ℓ′(v)) |= ψ

where ℓ′i denotes the i-th component of the tuple. Since |En| ≤ 2(nc + 1)k ≤ n2k(c+1) = nd it holds
that no value in the image of ℓ′ exceeds nd.

Definition 5.13. A directed graph G with self-loops is strictly dichotomic if for all u, v ∈ V (G) and
α ∈ {in, out} it holds that Nα(u)∩Nα(v) = ∅ or Nα(u) = Nα(v). A directed graph G is dichotomic
if self-loops can be added to G such that it becomes strictly dichotomic.

The graph with vertices u, v, w and edges (u, v), (v, u), (u,w), (v, w) is dichotomic but not strictly
dichotomic since Nout(u) and Nout(v) are neither disjoint nor equal but if we add the self-loops (u, u)
and (v, v) then it becomes strictly dichotomic. Every directed forest is strictly dichotomic. Every
vertex in a forest has in-degree at most one and therefore Nin(u) = Nin(v) or Nin(u)∩Nin(v) = ∅ for
all u, v ∈ V (G). Additionally, the out-neighborhoods of every distinct pair of vertices are disjoint
because every node has a unique parent.

Theorem 5.14. Dichotomic graphs are ≤BF-complete for GFO(=).

Proof. Since GFO(=) = GFOqf(=) (Fact 3.6) it suffices to show that dichotomic graphs are ≤BF-
complete for GFOqf(=). We show that (1) a graph is dichotomic iff it is in gr(S) where S = (φ, 1)
and φ(x1, x2, y1, y2) ≜ x1 = y2 and (2) gr(S′) ⊆ gr(S) holds for every atomic labeling scheme S′

over ∅ (i.e. using only equality). Membership of dichotomic graphs in GFOqf(=) directly follows
from (1). To see that every graph class C in GFOqf(=) reduces to dichotomic graphs consider the
following argument. Let C ∈ GFOqf(=). Due to Lemma 5.11 there exist atomic labeling schemes
S1, . . . , Sa over ∅ and a boolean formula φ such that C ⊆ φ(gr(S1), . . . , gr(Sa)) (gr∞(·) = gr(·) since
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no overflow can occur without addition or multiplication). Due to (2) gr(Si) ⊆ gr(S) holds for all
i ∈ [a]. This implies C ⊆ φ(gr(S), . . . , gr(S)) and therefore C reduces to dichotomic graphs via φ.
(1) “⇒”: Let G be a dichotomic graph with n vertices and let V (G) = [n]. Let G′ be a strictly

dichotomic graph with the same vertex set as G such that after removing all self-loops from G′ one
obtains G. Let ∼α denote the equivalence relation on V (G) such that u ∼α v iff Nα(u) = Nα(v) for
α ∈ {in, out} where Nα refers to the α-neighborhood of G′. For a vertex v ∈ V (G) let [v]α denote
a representative of the equivalence class of v w.r.t. ∼α. For a vertex v ∈ V (G) with in-degree at
least one let [v]pred = [u]out where u is some vertex in Nin(v). If v has in-degree zero let [v]pred = 0.
Observe that for all u, v ∈ V (G) it holds that [u]pred = [v]pred whenever u ∼in v and therefore
[u]pred = [[u]in]pred. It holds that G is in gr(S) via the labeling ℓ(v) = ([v]out, [[v]in]pred) because for
all u ̸= v:

(u, v) ∈ E(G) ⇔ ([u]out, v) ∈ E(G) ⇔ [u]out = [v]pred ⇔ [u]out = [[v]in]pred ⇔ ℓ1(u) = ℓ2(v)

“⇐”: Let G be a graph with n vertices that is in gr(S) via a labeling ℓ : V (G) → [n]20. Add a
self-loop to every vertex u of G such that ℓ1(u) = ℓ2(u) and call the resulting graph G′. We argue
that G′ is strictly dichotomic and therefore G is dichotomic. Given two vertices u, v it holds that
either ℓ1(u) = ℓ1(v) and therefore u and v must have the same out-neighborhood or ℓ1(u) ̸= ℓ1(v)
and thus their out-neighborhoods must be disjoint. The same argument can be made for the
in-neighborhoods. It follows that G′ is strictly dichotomic.
(2) Let S′ = (ψ, c) be an atomic labeling scheme over ∅ and let ψ have x1, . . . , xk, y1, . . . , yk as

free variables. If ψ is xi = xj or yi = yj for some i, j ∈ [k] then it is simple to see that every graph in
gr(S′) is dichotomic and therefore gr(S′) ⊆ gr(S). Suppose ψ ≜ xi = yj for some i, j ∈ [k]. Assume
G ∈ gr(S′) via ℓ : V (G) → [nc]k0. Since only the i-th and j-th component of ℓ are considered when
evaluating ψ, the other components can be ignored. Let Zn = {ℓi(v) | v ∈ V (G)} = {e1, . . . , ezn}. It
holds that zn ≤ n and G is in gr(S) via ℓ′(v) = (a, b) where ea = ℓi(v) and b is chosen s.t. ℓj(v) = eb
if ℓj(v) ∈ Zn and b = 0 otherwise.

Definition 5.15. A directed graph G with self-loops is a strict linear neighborhood graph if for all
u, v ∈ V (G) and α ∈ {in, out} it holds that Nα(u) ⊆ Nα(v) or Nα(v) ⊆ Nα(u). A directed graph G
is a linear neighborhood graph if self-loops can be added to G such that it becomes a strict linear
neighborhood graph.

Theorem 5.16. Linear neighborhood graphs are ≤BF-complete for GFO(<).

Proof. Since GFO(<) = GFOqf(<) (Theorem 3.7) it suffices to show that linear neighborhood graphs
are ≤BF-complete for GFOqf(<). We show that (1) a graph is a linear neighborhood graph iff it is
in gr(S) where S = (φ, 1) and φ(x1, x2, y1, y2) ≜ x1 < y2 and (2) gr(S′) reduces to gr(S) for every
atomic labeling scheme S′ over {<}. Then the same argument as in the proof of Theorem 5.14
applies, except that gr(Si) must be replaced with ϕi(gr(S), . . . , gr(S)) (with gr(Si) ≤BF gr(S) via
ϕi) instead of gr(S) for all i ∈ [a] since we only show reducibility in (2) here.
(1) “⇒”: Let G be a linear neighborhood graph with n vertices. Let G′ be a strict linear

neighborhood graph with the same vertex set as G such that G′ = G after removing all self-loops
from G′. Let ∼in be the equivalence relation on V (G) such that u ∼in v if Nin(u) = Nin(v) where Nin

refers to the in-neighborhood of G′. Let V0 be the set of vertices with in-degree zero. Let V1, . . . , Vk
be the equivalence classes of ∼in except V0 such that Nin(Vi) ⊊ Nin(Vj) for all i, j ∈ [k] with i < j.
The following labeling ℓ : V (G) → [n]20 shows that G is in gr(S). For u ∈ V (G) let ℓ(u) = (u1, u2)
with u ∈ Vu2 and u1 is the minimal value such that u ∈ Nin(Vu1+1) (or u1 = k if this minimum
does not exist) for u1, u2 ∈ [k]0. To see that this is correct, consider an edge (u, v) ∈ E(G) and
ℓ(u) = (u1, u2), ℓ(v) = (v1, v2). It holds that u ∈ Nin(v) = Nin(Vv2). Since u ∈ Nin(Vv2) it follows
that u1+1 ≤ v2 and thus u1 < v2. For a non-edge (u, v) /∈ E(G) it holds that u /∈ Nin(v) = Nin(Vv2).
Therefore u1 + 1 > v2 and thus u1 ̸< v2.
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“⇐”: Let G be a graph that is in gr(S) via a labeling ℓ : V (G) → [n]20. Add a self-loop to
every vertex u of G such that ℓ1(u) < ℓ2(u) and call the resulting graph G′. We argue that
G′ is a strict linear neighborhood graph and therefore G is a linear neighborhood graph. Let
u, v ∈ V (G) and ℓ(u) = (u1, u2), ℓ(v) = (v1, v2). If u1 ≤ v1 then Nout(v) ⊆ Nout(u). If u1 ≥ v1 then
Nout(u) ⊆ Nout(v). The same holds for u2, v2 and the in-neighborhoods of u and v. Therefore G′ is
a strict linear neighborhood graph.
(2) Let S′ = (ψ, c) be an atomic labeling scheme over {<} and let ψ have x1, . . . , xk, y1, . . . , yk

as free variables. If ψ uses ‘=’ then it can be rewritten using ‘<’ since x = y iff ¬(x < y ∨ y < x).
Therefore it suffices to consider only atomic labeling schemes using ‘<‘ and show that they reduce
to gr(S).
If ψ is xi < xj or yi < yj for some i, j ∈ [k] then it is easy to see that gr(S′) is dichotomic and

therefore can be expressed as atomic labeling scheme using ‘=’. Therefore we assume ψ ≜ xi < yj
for some i, j ∈ [k]. Let G be a graph with n vertices in gr(S′) via a labeling ℓ : V (G) → [nc]k0. Let
Zn = {ℓi(v) | v ∈ V (G)} and Zn = {e0, . . . , ezn−1} such that e0 < e1 < · · · < ezn−1 (the order of
the values is preserved by the indices). Additionally, for x ∈ N0 we define π(x) as p such that ep is
the smallest value in Zn with x ≤ ep; if such a value does not exist then π(x) = zn. For example,
if Zn = {3, 7, 11} = {e0, e1, e2} then π(x) = 0 for 0 ≤ x ≤ 3, π(x) = 1 for 4 ≤ x ≤ 7, π(x) = 2 for
8 ≤ x ≤ 11 and π(x) = 3 for x > 11. Then G is in gr(S) via ℓ(v) = (a, π(ℓj(v))) with ea = ℓi(v).

Observe that only undirected graph classes can reduce to an undirected graph class since
conjunction, disjunction and negation preserve the symmetry of the edge relation (by undirected we
mean a graph class that only contains graphs with symmetric edge relation). Therefore it trivially
holds that forests or interval graphs cannot be complete for GFO(=) or GFO(<). However, we can
consider the undirected version of these sets where all non-undirected graph classes are removed.
For a set of graph classes A let undirected A denote the set of undirected graph classes in A.

Theorem 5.17. No uniformly sparse graph class is ≤BF-complete for undirected GFO(=).

Proof. We prove this by showing that (1) a graph class C reduces to forests iff C or ¬C is uniformly
sparse and (2) the set of all complete and empty graphs X is in GFO(=) but neither uniformly
sparse nor co-uniformly sparse. Suppose C is uniformly sparse. Due to (1) it holds that C ≤BF Forest
and therefore the set of graph classes that reduce to C is a subset of the set of uniformly sparse
graph classes and their complements since D ≤BF C implies D ≤BF Forest. This implies X cannot
be reduced to C but it is in GFO(=) due to (2). Therefore C is not complete for undirected GFO(=).
(1) We show that if C ≤BF Forest then C or ¬C is uniformly sparse. The other direction follows

from the fact that every uniformly sparse graph class has bounded arboricity. First, observe that
C ∧ D ⊆ C whenever C is closed under edge deletion since E(G ∧H) ⊆ E(G) for all graphs G,H.
Analogously, C ∨ D ⊆ C if C is closed under edge insertion. Therefore Forest ∧ D ⊆ Forest and
¬Forest ∨ D ⊆ ¬Forest for all graph classes D.
Suppose C ≤BF Forest via a boolean formula φ, i.e. C ⊆ φ(Forest, . . . ,Forest). We can assume

w.l.o.g. that φ is in DNF due to Lemma 5.3 . A clause of φ is a conjunction of literals and a literal
can be either Forest or ¬Forest. If a clause C of φ contains at least one positive literal (Forest) then
it evaluates to a subset of Forest since Forest∧C ⊆ Forest. If a clause C with k literals contains only
negative literals, i.e. C =

∧k
i=1 ¬Forest, then it evaluates to ¬

∨k
i=1 Forest which is the complement

of the class of graphs with arboricity at most k. Therefore each clause in φ either evaluates to
Forest or ¬

∨k
i=1 Forest for some k ∈ N.

Assume every clause in φ evaluates to Forest and φ has k clauses. Then φ(Forest, . . . ,Forest)
evaluates to the class of graphs with arboricity at most k which is uniformly sparse and therefore
C, which is a subset of this class, is uniformly sparse as well. If this assumption does not hold
then at least one clause evaluates to A := ¬

∨k
i=1 Forest for some k ∈ N. Since A is closed under
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Figure 3: Overview of the sets of graph classes considered here

edge insertion it follows that F (Forest, . . . ,Forest) is a subset of A which is the complement of a
uniformly sparse graph class and therefore this holds for C as well since it is a subset of A.

(2) X is in GFO(=) via the logical labeling scheme (φ, 1) with φ(x1, x2, y1, y2) ≜ x1 = y2∨y1 = x2.
For Kn label every vertex with (1, 1) and for ¬Kn label every vertex with (1, 2). Neither X nor ¬X
are uniformly sparse since both contain the set of complete graphs.

6 Summary & Open Questions

There exist factorial, hereditary graph classes without a labeling scheme (Theorem 2.3). Albeit, the
graph classes that witness this have been constructed for this very purpose. So the question remains
for natural graph classes such as disk graphs, line segment graphs, k-dot product graphs or graph
classes with bounded functionality whether they admit a labeling scheme. To refute the existence of
a labeling scheme for a graph class one can either try to argue that it cannot have a polynomial-size
universal graph or that such a labeling scheme cannot exist if the label decoder is confined to a
particular level of complexity. The latter motivated us to introduce logical labeling schemes since
they are highly structured compared to classical complexity classes while still capturing many of
the graph classes known to have a labeling scheme.
As we considered various fragments of logical labeling schemes, three noteworthy sets of graph
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classes with various characterizations have emerged: GFO(=), GFO(<) and GFOqf . The set GFOqf

can be characterized as the set of graph classes with a labeling scheme whose label decoder can
be computed on a RAM without division in constant time, making membership in this set also
interesting from a more applied perspective. Moreover, its closure under hereditary closure coincides
with PBS (Fact 4.6), which contains the first three aforementioned natural graph classes for which
no labeling scheme is known. The sets GFO(=) and GFO(<) can be regarded as generalizations of
the labeling schemes for uniformly sparse graphs and interval graphs. The set GFO(=) is equivalent
to equality-based labeling schemes (EBLS), which cannot represent interval graphs among other
graph classes (Theorem 3.10). Since disk graphs, line segment graphs and k-dot product graphs
contain interval graphs for k ≥ 2 ([Fid+98, Theorem 21]) this also rules out that these graph classes
are in GFO(=). Is any of these graph classes in GFO(<)? If one of them is not then this also implies
that GFO(<) ̸= GFOqf due to Corollary 4.8.
Interestingly, all graph classes known to have a labeling scheme can be found in GAC0 with the

only exceptions that we are aware of being graph classes with bounded twin-width and induced
subgraphs of hypercubes for which membership in GAC0 is unclear. Therefore proving that a
graph class is outside of GAC0 would be a remarkable result since it shows that the most common
techniques for constructing a labeling scheme fail. Proving a graph class to be outside of GFO(<) is
a step towards such a result as it rules out a certain subset of labeling schemes from GAC0. Note
that no factorial, hereditary graph class is known which separates the two sets, i.e. it is theoretically
possible that GFO(<) = GAC0 ∩ [Factorial∩Hereditary]⊆. Candidates to refute this are graph classes
with bounded clique-width. Are graph classes with bounded clique-width even in PBS?

Algebraic reductions ≤BF enable us to relate the adjacency structure of graph classes to one
another in terms of boolean formulas. Showing that a graph class C reduces to another graph class
D means that finding a labeling scheme for C is not harder than finding one for D. The concept of
completeness from complexity theory can also be applied in our context. We have shown that GFO(=)
and GFO(<) have complete graph classes, namely dichotomic and linear neighborhood graphs,
whereas [Factorial ∩ Hereditary]⊆ and GAC0 do not (Fact 5.9 & 5.10). A line of inquiry that we find
particularly interesting is to determine complete graph classes for GFO(=) and GFO(<) restricted
to undirected graph classes. We have seen that no uniformly sparse graph class can be complete for
undirected GFO(=) (Theorem 5.17). Is the graph class gr(φ, 1) with φ ≜ x1 = y2 ∨ y1 = x2—an
undirected variant of dichotomic graphs—complete for undirected GFO(=)? Another interesting
problem is to establish a reduction among factorial, hereditary graph classes for which no labeling
schemes are known.
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